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ABS”J’RACT

Aerosols are believed to play a direct role in the radiation budget of Earth but their net

radiative effect is not well established, particularly on regional scales. Whether aerosols heat

or cool a given location depends on their composition and column amount and also on the

surface albedo, information that is not routinely available, especially over land. Obtaining

global information on aerosol and surface radiative characteristics, over both ocean and

land, is a task of the Multi-angle Imaging SpectroRadiometer  (MISR),  an instrument to be

launched in 1998 on the EOS-AM1  platform. Three algorithms are described that will be

implemented to retrieve aerosol properties globally using MISR data. Because of the large

volume of data to be processed on a daily basis, these algorithms rely on look-up tables of

atmospheric radiative parameters and predetermined aerosol mixture models to expedite the

radiative transfer calculations. Over ocean, the “dark water*’ algorithm is used, taking full

advantage of the nature of the MISR data. Over land, a choice of algorithms is made,

depending on the surface types within a scene - dark water bodies, heavily vegetated areas,

or high contrast terrain. The retrieval algorithms are tested on simulated MISR data,

computed using realistic aerosol and surface reflectance models. Results of retrieval

sensitivity studies to aerosol properties and the Sun-view geometry are presented.

I. INTRODIJCTION

Concern about the impact of aerosols on global climate is creating a resurgence of research

interest. This is fueled by a number of issues; most notable is the current effort to define the extent

and limits of the greenhouse problem. Many recent papers have attempted to link increased anthro-

pogenic  activity to increased aerosol production, resulting in decreased insolation, thus mitigating

the anticipated rise in global surface air temperature caused by enhanced concentrations of green-

house gases (e.g., [ 1 ]-[3]). However, these studies do not provide a clear and concise solution to

the problem. The most recent IPCC report [4] provides a review of the tropospheric aerosol issue

and concludes that direct aerosol forcing is on the order of 0.5 W/mz, uncertain to a factor of two.

The impacts of changing particle properties on clouds (aerosol “indirect” effects) are even less well

understood.

We can identify at least three reasons for the uncertainty in direct aerosol forcing. These are
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( 1 ) ~hc lack of a global  climatology of aerosol optical depth, (2) the uncertainty in aerosol compo-

sition and associated single-scattering al bcdo,  and (3) [he paucity of knowledge of spatial imd tem-

poral variability on (he re.giontil  scale. Aerosol column amount (i.e., optical depth) is the funda-

mental parameter required to understand direct impacts on the solar radiation b~ilancc.

Obviously, global climate studies require a global optical depth climatology, but such a da-

tabase does not currently exist. The most extensive climatology available today uses solar reflec-

tance measured by AVHRR, and has provided coverage of the world’s oceans equatorward of 70
0 latitude since 1987 [5]. Although this climatology is very useful and offers some interesting in-

sights into global aerosol processes, it has two major deficiencies. The first is the lack of optical

depth values over land. Although oceans cover the bulk of the Earth’s surface, land areas are the

source of the majority of particles and essentially all anthropogenic production. In general, we ex-

pect to find the largest optical depth values over land and coastal ocean. The inability of the

AVHRR algorithm to retrieve land optical depths leaves a critical component of the problem un-

addressed. Second, the retrieval algorithm assumes a fixed size distribution and index of refraction,

which in essence means a fixed phase function. Since the reflected radiation depends on the phasse

function as well as the optical depth, this produces an unresolvable ambiguity in the retrieval.

A variety of ground-based aerosol optical depth time series are available, but these are lim-

ited in spatial coverage. As a result, assessments of the global impacts of aerosol have largely been

based on a grossly inadequate knowledge of the optical depth climatology, and practically no

knowledge of the scattering phase function or asymmetry factor.

In an effort to meet these observational needs, the Multi-angle Imaging SpectroRadiometer

(MISR) instrument, scheduled for launch in 1998 aboard the Earth Observing System-AM 1 plat-

form, is capable of continuously imaging the surface at nine fixed viewing angles (nadir plus 70.5°,

60.0°,45.6°,26.10 forward and aftward of nadir) and four spectral bands (446, 558,672, and 866

nm) [6]. A given scene will be imaged with all 36 combinations of view angle and wavelength

nearly simultaneously (within a span of 7 minutes), allowing us to assume that the atmospheric

aerosols in the scene remain cc)nstant during the course of the measurements. The MISR aerosol

retrieval algorithms are designed to exploit the instrument’s unique angular coverage to better char-

acterize aerosol properties. The footprint size o! the globally produced MISR datu is nominally 1.1

km (termed a subregion), but the aerosol retrieval is actually performed over ii 16x 16 arruy of sub-
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regions, i.e., a 17.6 km x 17.6 km area. This lower spatiul resolution for aerosol retrievals allows

for considerable flexibility in [he way the retrievals arc performed, while still providing useful in-

formation on local, regional, and synoptic scales.

II. AEROSOL RETRIEVAL STRATEGY

The retrieval of aerosol properties by remote sensing is a notoriously under-determined

problem. The only demonstrated global-scale, satellite-based retrieval of aerosols derives aerosol

optical depth from single-angle, monospectral data, using assumed values for all the aerosol mi-

crophysical  properties. The h41SR aerosol retrieval builds upon earlier work, making use of the

multi-angle data to remove much of the ambiguity. Our retrieval strategy is based on a few assump-

tions and other considerations:

1) We assume atmospheric aerosols are homogeneous within a 17.6 km2 region at the sur-

face, growing to about 75 lm~2 in area at an altitude of 10 km. With this assumption, a strength of

the multi-angle technique is that the different effective path lengths, observed through the atmo-

sphere, vary in a predictable way.

2) We perform our retrievals by comparing observed radiances with model radiances calcu-

lated for a suite of aerosol compositions and size distributions that covers a range of expected nat-

ural conditions. This makes the retrieval cornputationally  efficient, and zdlows us to make use of

climatological  constraints on aerosol properties and to determine whether the observations are con-

sistent with various climatological expectations.

3) We adopt the X2 statistical formalism to assess the magnitude of the residuals in the com-

parisons, and report all models that meet the acceptance criteria.This approach explicitly includes

instrument measurement uncertainty in the retrieval results.

4) The largest uncertainty in the retrieval algorithm is the reflectance of the underlying sur-

face. We have three distinct aerosol algorithms, selectively used with data taken over surfaces with

progressively less-well-constrained reflectance properties: dark water, dense dark vegetation

(DDV), and heterogeneous land. For dark water, we assume the water-leaving radiance is negligi-

ble at red and near-IR wavelengths, and explicitly account for specular reflection and whitecaps.

For DDV, wc assume an angular shupe for the surface bidirectional reflectance factor (BRF) and

.
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leave the absolute reflectivity as a free parameter, and for heterogeneous land, we do not make any

assumptions about the BRF but represent it as a sum of empirical orthogonal functions, derived

from the data themselves.

5) We expect to be able to distinguish airmasses holding different types of aerosols. The

strength of the MISR aerosol data is its information about the global, temporally varying context;

our data is complementary to in situ measurements, and we plan to use them to determine the de-

tailed aerosol properties within air masses wherever possible.

6) Because our retrieval algorithms presently require an assumption of horizontal atmospher-

ic homogeneity, no aerosol retrievals will be performed over land when the surface topography is

complex. Additionally, we filter out subregions that are cloud-contaminated or, over water, con-

taminated by glint.

7) A number of configurable parameters in the algorithms will be adjusted after launch to

improve the performance of the algorithms with real MISR data.

A. Aerosol Climatology Product

In order to constrain the MISR aerosol retrievals, it is advantageous to make reasonable use

of what is known about the types of aerosols that are found in the troposphere. In general, tropo-

spheric aerosols fall into a small number of compositional categories, which include sea spray, sul-

fate/nitrate, mineral dust, biomass burning particles, and urban soot. Typical values for approxi-

mate size ranges, and the proclivity of each particle type to adsorb water under increasing relative

humidity are also available in the literature. Therefore, we completely prescribe the physical and

chemical (and therefore optical) properties of candidate aerosols. The one advantage of this ap-

proach is that it makes use of what is already known about aerosols to remove some of the ambi-

guity about aerosol properties in the information content of the MISR measurements. To this end,

a review of published aerosol climatologies  was performed (including [7]- [10] and many others).

Aerosol attributes typical of natural conditions as described in these references (such as composi-

tional and size classes) are adopted in the MISR retrievals. However, other attributes, such as aero-

sol column amount, aerosol type, and specific spatial and temporal distributions, are left to be de-

termined by [he retrievals.



The aerosol information used by the MISR retrieval algorithms is contained in the Aerosol

Climatology Product (ACP) [11] which is composed of three parts: 1 ) an aerosol physical and op-

tical properties (APOP) file, 2) a tropospheric aerosol mixture file, and 3) an aerosol climatology

file. This dataset will reside at the NASA Langley Distributed Active Archive Center (DAAC),

where all the MISR data processing is done, and will be available to users of the MISR aerosol

products who want additional information about MISR-retrieved  aerosols. The APOP file contains

the microphysical  and scattering characteristics of the individual, single composition, single parti-

cle size distribution (so called “pure”) aerosol models upon which the retrievals are based. The par-

ticle physical properties (size distribution, index of refraction, and tendency to adsorb water) are

based upon current climatology data. The effective optical properties are calculated using Mie the-

ory for spherical particles, and ellipsoid approximations/geometric optics for non-spherical cmes

[12], [13], for a range of relative humidities (RH). Size statistics are calculated, and optical prop-

erties are reported for all MISR bands. A list of the APOP pure particle types and some of their

attributes is given in Table 1. All aerosols are modeled using a log-normal particle size distribution,

except for near-surface fog, which follows a power law, Both types of distributions are character-

ized by a minimum and maximum radius, rl and r2, respectively. The log-normal distribution is

also parametrized by the characteristic radius rC and characteristic width a, whereas the power

law distribution is parametrized by an exponent a. The effective radius r,~j of the distribution is

an average over the distribution, weighted by the geometrical cross-sectional area of the particles.

During the retrieval process, mixtures of these pure particles are generated to simulate the

more complex aerosol compositions encountered in the troposphere. Table 2 shows the initial suite

of mixtures specified in the tropospheric aerosol mixture file of the ACP. The relative abundances,

expressed as percentages of the total aerosol extinction optical depth, are wavelength and relative

humidity dependent, due to the dependence of extinction cross section on wavelength and RH. The

entries in Table 2 are for the MISR green band (558 nm) and 70% RH. Finally, the third file in the

ACP provides aerosol climatology information (mixture type, optical depth at 558 nm, and esti-

mated likelihood of occurrence) on a 10 latitude-longitude global grid and in monthly intervals.

This file is not used in the aerosol retrieval process, but provides a “post algorithm” mechanism for

finding anomalous conditions, which may indicate the discovery of unexpected aerosol types and

distributions, or limitations of the algorithms.
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B. Sinlula(ed MISR Ancill~lry Radiative Tr[lm;fir  (SMART) lhtasel

In addition to predetermined aerosol types, another major feature of the aerosol retrieval

strategy is the use of a look-up table instead of real-time calculations to obtain most of the radiative

transfer parameters needed by the algorithms. Whether retrieving aerosols over ocean or land, the

fundamental process involves comparing measured top-of-atmosphere (TOA) radiances to those

derived from an atmosphere/surface radiative transfer (RT) model. To accommodate the timing re-

quirements of analyzing the lwge amount of observational data obtained on a daily basis and the

required modeling of relatively complex radiative transfer processes in the retrieval algorithms,

many of the necessary RT parameters required by the algorithms have been precomputed, based

on the pure aerosol models contained in the ACP. The results are stored in the Simulated MISR

Ancillary Radiative Transfer (SMART) dataset [11]. This dataset  contains aerosol-dependent

black surface atmospheric path radiances, diffuse transmittances, irradiances, and bihemispherical

albedos  in addition to the TOA radiance components contributed by a windspeed-dependent ocean

surface. Using these parameters, the TOA radiances both over ocean and land, required by the aero-

sol retrieval algorithms, are then computed for all the aerosol mixture models in the ACP.

Here is a summary of the MISR aerosol retrieval strategy: From the clata contained in the

ACP and SMART datasets, TOA radiances for mixtures of pure aerosol types are computed and

compared with the MISR observations to determine those models that provide good fits to the data.

Both aerosol type and optical depth are retrieved in this process. Three retrieval algorithms are

available. One is used over dark water and two over land; only one is selected for a given region

based on a hierarchical scheme which depends on the surface type (dark water, dense dark vegeta-

tion, or heterogeneous land). These three algorithms are schematically illustrated in Figure 1. For

a region, defined as 17.6 km x 17.6 km in size, the algorithm determines whether any of the 16x16

subregions can be classified as dark water. If there are any dark water subregions within the region,

the “dark water” retrieval algorithm is used. If no dark water subregions are found, a search is made

for subregions classified as dense, dark vegetation (DDV). If any are found, the “DDV” retrieval

algorithm is used. If no DDV subregions are found, the selection defaults to the “heterogeneous

land” algorithm. Regardless of the retrieval path chosen, an aerosol column amount upper bound,

based on the darkest radiance observed in the region, is also calculated.



III. MODELING OF TOA RADIANCE

The TOA radiance, L~oA , at wavelength z can generally be expressed as the sum of two

parts,

(1)

where Lk“m is the radiance which has been scattered by the atmosphere to space without interacting
surf .with the surface (i.e., the path radiance) and LA K the additional radiance at the top of the

atmosphere produced by the interaction of the downward directed atmospheric radiance with the

surface. The cosines of the view and solar angles are -p and ~, respectively, $-I$o is the view

azimuth angle with respect to the solar position, and TA is the total (Rayleigh + aerosol) extinction

optical depth.

The aerosol retrieval process requires a determination of the path radiance L~rff’ for aerosol

mixtures defined in the ACP. In principle, the most exact way to do this is to perform the appro-

priate radiative transfer calculations for the aerosol mixture and store the results in the SMART

dataset. However, to allow more flexibility in our ability to define mixtures and to minimize the

required storage space for the SMART dataset, we use an approximation which requires knowl-

edge of only the optical properties and the computed path radiances of the individual components

making up the aerosol mixture. This approximation, described by Abdou et al. [15], is a modifica-

tion of the standard linear mixing approach, e.g., [14], and provides a much more accurate calcu-

lation of Lf’m than standard linear mixing in situations where particles with substantially different

absorption characteristics are present. Application of modified linear mixing to the path radiance

has been tested for all combinations of aerosols contained in the ACP, and provides sufficiently

accurate results for all mixture cases in Table 2 up to total aerosol optical depths of at least 2. There

is minimal computation for Lf’m, since all the necessary optical parameters are obtained from the

ACP while the component path radiances are obtained from the SMART dataset, stored as func-

tions of -p, Po, O-$., and TA.

surjThe sur!dce contribution Lk to the TOA radiance in ( 1 ) can be written as
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where L~c is the incident radiance at the surface, Tk is the upward

R~rf is the surface BRF. The treatment of this component varies among our three aerosol retrieval

techniques and, therefore, will be discussed on an individual basis.

@O;~x)p’dp’’d+’’dd@  d@’

diffuse transmittance.

(2)

and

IV. AEROSOL RETRIEVAL OVER DARK WATER

Because the reflectance of large water bodies (e.g., the ocean) is often uniform, and deep wa-

ter bodies have negligible water-leaving radiance at red and near-infrared wavelengths, consider-

able progress has been made in development of algorithms to retrieve aerosol properties over dark

water. By assuming an aerosol model (i.e., specification of a particular mixture), it is possible using

radiative transfer theory to derive a one-to-one relationship between observed radiance and aerosol

column amount. Such modeling has been applied to the retrieval of aerosol concentration from

Landsat [16], [17] and NOAA AVHRR [ 18]-[21 ], [5] single-view radiances. Multi-angle radianc-

es, which are governed strongly by the shape of the aerosol scattering phase function, provide ad-

ditional information with which to refine the aerosol model used in the retrieval of optical depth.

A. Surjace Contribution to TOA Radiance

is computed using the Kirchhoff approach to modelingThe ocean surface BRF, Rprf, in (2)

the radiance scattered from a randomly rough surface [22], [23]. The rough surface is modeled as

an isotropic, Gaussian distribution of surface slopes with a dependence on surface windspeed

w~Ur,, based on the empirical formula of Cox and Munk [24] and includes wave shadowing ef-

fects. Empirical estimation of whitecap reflectance [25], [26] is also included in the BRF model.

Once R~r~ is determined, the surface contribution L*““f  for a particular atmospheric model can

be directly computed from (2).

The surf~ce contribution for an aerosol mixture is obtained using standard linear  mixing.
.$// rfStandard linear mixing is adequate here bccausc L* IS dominated by the properties of the surface

8
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13 RF. Like the atmospheric path radiance, [he surface contributions for the individual components

of the aerosol mixture are obtained from the SMART datase[,  stored as functions of -P, Po, @-$o, 1A

and WI~l,,j [ 1 1]. For operational data processing at the DAAC, estimates of the surface windspeed

are obtained from the EOS Data Assimilation Office (DAO).

B. Criteria for Aerosol Best Estimate

For a specified surface windspeed and view/solar geometry corresponding to a particular

measurement, the TOA radiances in the red (672 nm) and near IR (866 nm) MISR bands are de-

termined at each camera angle for each aerosol mixture model to be tested. The retrieval is based

on a comparison of the radiances for each model and aerosol column amount with the actual MISR

observations, using several types of residuals as test variables. A single retrieval is performed over

a 17.6 km x 17.6 km region, using the median values of the MISR radiances from all cloud-free

subregions within the region. For this retrieval algorithm and the two that are used over land, it is

assumed that the atmospheric properties, i.e., path radiances and transmittances, do not vary over

a region.

The criterion used to find the best-fitting aerosol model is minimization of the z~~~ test vari-

able, calculated as a function of aerosol column amount (described by the optical depth at 558 nm,

~5Sg )]

(3)

where the argument j is shorthand for the camera geometry, (Pl PO, @j – O.) of the Ih camera,
~~ISR TOA .

is the median MISR radiance, LA 1s the model TOA radiance for the aerosol mixture, and
“ MISR

aab~, ~ is the absolute radiometric uncertainty in LA [27]. The sum inj is over the nine MISR

cameras and the sum in L is over the two bands at 672 and 866 nm, the wavelengths at which [he

dark water surface is assumed to have negligible water-leaving radiance. For a valid value of L~’sR

in thejth camera the weight Wlj is equal to the inverse of the cosine of the view angle of camera

.

j, providing a greater weighting of the more oblique cameras to take advantage of the longer
MISh’atmospheric slant path. When the value of LA m thejth  camera is not valid (e.g., due to cloud

9



contamination or channel F~ilure)  then w~j is set equal to zero.

For each candidate model we evaluate X~~$ over a range of aerosol column amount and de-

termine the minimum x~~~ beStil’.  This minimum is deter-and its corresponding optical depth, r~~g

mined by fitting a parabolic curve through the smallest computed x~b$ and its two neighboring val-

ues on the T558 grid,

In [xjb,(T~58)]  =  A +  B7558  +  cT~58. (4)

The logarithm of &~ is used instead of z~b~ to guarantee that the ItIinimUITI  value,  x~b~, ~in ,

determined from the fitting procedure, is always positive. Then the optical depth at this minimum

is given by

bestflt  –B
’558 = Fe

(5)

with an uncertainty

bestfii =
‘T558 (6)

This uncertainty is defined as the optical depth difference from ~558~’s~~~r  needed to increase X~~S, min

by 1,

‘rice z~bx, ~in has been found, its value establishes whether the candidate aerosol model

provides a good fit to the measurements. A value of x~bs ~in <1 indicates a good fit but, to allow

for unmodeled sources of uncertainty, we establish z~bs ~in <2 as an acceptable fit. Since there

are 18 measurements (nine angles  and two spectral bands) for each ocean retrieval, there is more

than one piece of information we can use in comp&ing the model with the observations. Thus, we

define other test variables to help determine the goodness of fit of the particular aerosol model to
brstfttthe MISR data. These additional parameters are calculated for the aerosol optical depth, ~55R .

One of these goodness-of-fit test variables, x~~,,,,, , is a comparison of the angular shape normalized

to a reference camera (nominally the nadir view camera), which emphasizes camera-to-camera

geometric differences,

10



(7)

The argument ref is shorthand for the reference camera geometry, (p,,f, PO, $,,f – $.) and o~,O~,  ~

is the uncertainty in the measured camera-to-camera radiance ratio [27]. Another goodness-of-fit

test variable, X~PeC , is a comparison of the spectral ratio relative to the red band,

[

TOA bestfit  2
‘y69(~) ’ 8 6 6  (~;T866 )

MISR . - TOA . . besflit
’ 6 7 2  (.)) ’ 6 7 2  (j,~672 ) )

dpe=(j)
Yw.

, (8)

where oSl,eC is the uncertainty in the measured band-to-band radiance ratio [27],

The metrics given in (7) and (8) take advantage of the smaller instrument relative uncertain-

ties as compared to the absolute uncertainty, thus providing potentially greater sensitivity. Simu-

lations have shown that ~~eO,n tends to be more sensitive to particle size than to composition,

whereas X~PeC tends to depend more on both particle size and composition.

Finally, we define a maximum deviation test variable,

(9)

to find the camera and band at which the observed radiance is most different from the model

radiance. This test variable is effective at picking out optical features such as “rainbows”.

,

Successful aerosol models are those for which al] four metrics, x~bs,  X~eO~ , X~PeC,  and

X2 ftill below threshold values. These threshold values  are nominally set to 2 for all four butIlls.tdt’b,
may be adjusted pending further theoretical sensitivity studies and experience with actual MISR

II



The radiometric performance of [hc instrumcn(  will dictate which aerosol models fit the data

to within the instrumental uncertainties. Any model which meets the criteria described above is

deemed a valid fit. Of course, the best situation is that only one of the many aerosol mixtures tested

will qualify as satisfactory. However, it is possible for more than one model to satisfy the good-

ness-of-fit criteria. Resolution of such ambiguities, which is not part of the DAAC operational

aerosol retrieval process, will require reference to additional information, such as the climatologi-

cal likelihood parameters contained in the Aerosol Climatology Product. It is also possible that no

model will qualify as fitting the observational data. This may be indicative of a failure of the pre-

determined models to represent the ambient atmospheric state, or some limitation of the algorithm

or instrument performance. Experience with actual MISR data will be necessary to determine if

any aerosol models need improvements. In any event, information on the fits for all aerosol models

tried in the retrieval will be logged as part of the MISR Aerosol Product. An Aerosol Retrieval Suc-

cess Indicator is established for each region as a simple way of determining (e.g., for subsequent

surface retrieval processing) if at least one good fitting model has been found. Assuming that at

least one model meets the goodness-of-fit criteria, two overall best estimates of aerosol column

amount are also calculated, the mean and the median of the individual successful model amounts.

C. Aerosol Retrieval Simulations

To test MISR’S sensitivity to aerosol properties over dark water, we simulated MISR data,

using aerosol models in which column amount, particle size, and the real and imaginary index of

refraction were varied over a wide range of values. We designated one set of MISR TOA radiances

as the “measurements”, with fixed aerosol properties, and tested whether it can be distinguished

within instrument uncertainty, from a series of comparison model radiances, using the four X2 test

variables described in the previous section. Here is a brief summary of the results obtained so far

for MISR observations at middle to high latitudes:

1) For non-absorbing particles, the aerosol optical depth can be retrieved over calm ocean to 0.05

or 10%, whichever is larger, even if the particle properties are poorly known. As particle absorption

increases, sensitivity to optical depth degrades, and becomes dependent on particle size and optical

depth. When the optical depth is Icss than 0.5 or if the particle characteristic radius is less than



about 0.8 pm. MISR optical depth sensitivity is better than 15% when the imaginary index of

refraction is within the values expected for all common particle types except soot (see Table 1).

Based on climatology, most ocean cases f~ll well within these favored limits.

2) According to the simulations, MISR should be able to distinguish three to four groups of

effective radius across the natural range (“small”, “medium”, and “large”). Most of this sensitivity

occurs for particles between 0.1 and about 1 pm in characteristic radius. This covers the range of

particle sizes where the scattering phase functions change from fairly isotropic behavior to curves

with well-developed forward and backward scattering peaks. The sensitivity to effective radius

increases for higher optical depth, since there is more aerosol signal in these cases, and is greatest

for Iess absorbing particles.

3) MISR sensitivity to index of refraction increases strongly with increasing optical depth. We can

distinguish about two or three groups of real index of refraction values between 1.33 and 1.55, as

long as the optical depth is 0.1 or larger and the particles are not strongly absorbing. However the

data are insensitive to the real part of the index of refraction for dark particles (imaginary index

larger than about 0.01 ). Sensitivity to the imaginary part of the index of refraction follows a similar

pattern, though the simulations suggest that three to four groups of values between 0.0 and 0.5 can

be distinguished.

4) Because MISR can sample the aerosol phase function between scattering angles of 60° and 170°,

the instrument is expected to be very sensitive to particle shape. For common mineral dust type

aerosols, we can distinguish spherical from non-spherical particles over calm ocean with a range

of sizes and column amounts expected under natural conditions.

More information about the sensitivity of MISR to aerosol properties over ocean can be found in

[28] and [29].

V. AEROSOL RETRIEVAL OVER DENSE DARK VEGETATION

Techniques for retrieving aerosol column amount over land from space are considerably less

well developed than those over dark water because of the higher brightness and heterogeneity of

the land surf~ce, The simplest means of determining the atmospheric contribution to the satellite

signal is to make an assumption about the surface reflectivity or albedo. Locations where the sur-

13



Pdcc boundary condition is believed to bc reasonably well understood are areas covered by dense,

dark vegetation (DDV). A method based on imaging over DDV has been investigated [30] and

forms [he basis of the MODIS aerosol retrieval over land [31]. MISR adopted a modified form of

this approach whereby the low reflectance of dense vegetation in the 446 and 672 nm bands are

constrained by a surface model, similar to the method used for retrievals over dark water. For

DDV, however, only the angular reflectance shape of the surface model is specified, and the abso-

lute reflectance in the blue and red bands are allowed to vary as free parameters (within certain

limits). Therefore, as is the case for dark water, MISR’S multi-view-angle capability can provide

enhancements to single-view-angle approaches to aerosol retrievals over DDV.

A. Detection of DDV.

Before the “DDV” aerosol retrieval technique can be used, specific subregions must first be

identified as DDV. This identification can be accomplished by comparing a subregion’s computed

ground-level vegetation index to a threshold value. The standard Normalized Difference Vegeta-

tion Index (NDVI)  can be defined for MISR spectral bands as

NDVI = ’866 – ’ 6 7 2

L866 + L672
(lo)

where L~Gb is the near-infrared surface-leaving radiance at 866 nm and L,6TZ  is the corresponding

red radiance at 672 nm. In general the two wavelengths straddle the photosynthetic absorption edge

so that L672 is significantly smaller than L866 for DDV. Therefore, if the two radiances are

measured at ground level, the NDVI is close to unity for dense, dark vegetation. Here, DDV is

defined such that any direct ground reflectance is completely obscured by the vegetation and that

the strong photosynthetic absorption at the red wavelength guarantees a very low reflectance

compared to the near-infrared.

If the radiance measurements L866 and L67Z are made from a spacecraft instead of at ground

level, then the inevitable atmospheric contamination of both radiances will modify the value of the

NDV1 when compared to the ground level value. The atmosphere-contaminated NDVI for a given

DDV site is generally smaller than the corresponding ground level NDVI, due mainly to the atmo-

spheric ptith radiance contribution to the measured radiance at the red wavelength. In general, the

NDVI will decrease as view zenith angle increases for DDV, due to the increased atmospheric con-



[ribution.  This characteristic forms the basis for a DDV detection algorithm which can be described

as follows: when atmospherically contaminated NDVI values are plotted as a function of I/p, and

the curve is extrapolated to the hypothetical viewing geometry l/u = O, the extrapolated NDVl val-

ue is theoretically the same as the extrapolated value obtained in the absence of atmospheric con-

tamination [32]. This is due to the fact that L~’m and TA both tend to zero when I/p tends to zero,

‘OA being equal to L~rJresulting in La at l/P = O. The subregions which are classified as DDV are

those for which the extrapolated NDVI is >0.75. Examples of the use of this algorithm are shown

in Table 3.

B. Sur@ce Contribution to TOA Reflectance

surf
The surface contribution to the TOA radiance, LA , in the dark water retrieval algorithm is

surf
easily computed using the aerosol components LL, ~ in the SMART dataset. In the DDV retrieval

algorithm, however, LA‘“’y is explicitly computed from (2) in the blue (446 nm) and red (672 nm)

MISR bands, using a parametrized surface reflectance model and atmospheric parameters in the
sur~ .

SMART dataset. This method for computing LA IS quite general and not restricted to a particular

surface model.

The model we used to describe the DDV surface bidirectional reflectance is that of Rahman

et al. [33]:

Ryf(-u!  l+),@ – +()) = ~(), ).[VOP(W + Po)lk - 1 “
( 1 - $2)

[
I –  ro, hot. 1+ 1 (11)

[ 1 + g2 - 2gcosQ]3’2
l+G

where Q is the scattering angle, defined by

1 I

Cosfd = –I-W( )+(1 -P2)2(1 –Po2)2@$-oo)?
and the geometric factor G is given by

(12)

(13)
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The adjustable parameters in (11) are ro, 1, k, 8. and ro, /,,,,. The last factor on the right hand side

of (11) is included to model the “hot spot” for vegetation canopies, i.e., the brightness increase

which occurs near scattering angles of 180° (backscatter).  The parameter ~O,I,O~,  in this factor is set

to a fixed value of 0.015 which is typical for DDV. The variables k and g are also pre-specified and

assumed to be wavelength independent, whereas r. ~ is permitted 10 WY within n~row limits for

both the blue and red MISR bands. Based on fits of ( 11 ) to measured [34] - [38] and synthetic [39],

[40] DDV reflectance factor data sets [41], recommend values for k ancl g are 0.5 and -0.2,

respectively, with an associated variance for each of about 0.02. Thus, it is convenient to rewrite

(Il)as

where &urf represents a prescribed, wavelength independent, normalized BRF that defines the

angular properties of the surface reflectance.

To make the calculations in (2) efficient, the surface BRF and the upward and downward dif-

fuse transmittance are expanded as a cosine Fourier series in $-$.. It then is assumed that only the

first two terms in these expansions contribute significantly to the angular structure of the diffusely

transmitted radiation fields incident on the surface and exiting at the TOA. The full functional form

of the BRF, however, is used for directly transmitted light. Thus, the radiance incident at the sur-

face can be approximated by

where 6 is the Dirac delta function, E. ~ is the TOA solar irradiance, ~L, o and ~~, I are the first
—

two Fourier coefficients of the downward diffuse transmittance TX, S1 is the bottom-of-

atmosphere bihemispherical  albedo,  and a is given by

16



II

a = 4~~R@(-p’, p)p’pdp’dp

0 0

““f with the first two coefficients defined asHere, ~&rf is the first Fourier coefficient of ~ ,

271

f&rJ(-p,  p’) = ~ j ksurJ(-p’,  p, ()’ - $)d@’,

(16)

(17)

o

and

27K

o

Equivalent expressions define the two coefficients of the downward transmittance ~A. Finally,
difj

E:ir  and EA are the direct and diffuse irradiances, respectively, at the bottom of the atmosphere

for a black surface, with

The first term on the right-hand-side of (15) represents the direct radiance, the second term

represents approximately the diffuse downwelling radiance in the absence of any surface

reflectance (i.e., a black surface), and the last term represents approximately the downwelling

radiance due to multiple reflections between the atmosphere and the surface. Using this expression

and (14) in (2) and noting that the upward diffuse transmittance T1 is related to the downward

diffuse transmittance via reciprocity, i.e., t

(20)

the surface contribution to the TOA radiance can bc written as

17



(21)

and

o

1

()
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0

and

I

A(-p) = 2jf?@(-P,  p’)p’dp’  .

(29)

(30)

o

Combining (21 ) and (22) we note that all terms describing L~r~ are Iinear in ro, ~ except for the

last one. Linearity, however, is desirable in order to make the retrievals computationally  efficient.

Fortunately, since the product of ro, ~ and sl is small for DDV, the last te~ in (22) can be

reasonably approximated by specifying a fixed value for ro, a equal  to 0.01 S.

The functions a, A, k~ry, R~urJ, and those expressed by (23) - (29) are computed as need-

ed during the retrieval process. However, the two functions, TA, o and TL, 1, used in these expres-

sions are precomputed and stored in the SMART dataset for each pure aerosol type, evaluated on

a standard grid of aerosol optical depths and on a standard Radau quadrature point grid for p and
cliff

V’, which greatly simplifies the mathematical integration operation in these. equations. Ek and

Sk, parameters also needed by the algorithm, are evaluated on the same optical depth and quadra-

ture point grids, and included in the SMART dataset.

Like the aerosol retrieval over ocean, standard linear mixing is used to compute the surface

contribution to the TOA radiance. The contributions for the individual components of the aerosol

mixture are computed using (22).

C. Criteria for Aerosol Best Estimate

Similar criteria as for “dark water” retrieval case are used here. Median radiances are deter-

mined using all DDV subregions within the region, and these radiances then are compared to the

selected model aerosol mixture/surface TOA radiances. However, there are several notable differ-

ences:

( 1 ) The sum over wavelength includes only the blue (446 nm) and red (672 nm) MISR bonds

at which DDV has the lowest reflectance;
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(2) The aerosol column amount and the BRF parameters rO, ~ in the blue and red bands arc

varied in order to minimize the x~~~ parameter. The other X2 metrics are then calculated for these

optimal values of optical depth and surface reflcctances;

(3) The a~~~, CJ&ol, and CJ~Pe. are modified to include uncertainty in the assumed shape of

the surface BRF:

(4) The X~aXd,},  testis not used;

(5) For X~~$, x&Om  > and X&e. ~ the threshold value for an acceptable fit is taken to be 3.

The latter four differences reflect the greater uncertainty in specification of the surface boundary

condition relative to the dark water retrieval case.

The criterion used to determine the best fitting aerosol model is the minimization of %~~~, in

(3), where Ly is now given by

The parameter r-o, ~ is adjusted in this definition of x~b~,  such that X~b3 is minimized for each point

on the ~558 grid. This is done by a least squares procedure, whereby

(32)

with the requirement that rO ~ falls within specified limits, namely O < ro, ~ <0.03. If ro, ~ as

determined from (32) is less than O, it is replaced by O, and if it is greater than 0.03, it is replaced

by 0.03. In calculating %~~~  and r. ~, ~~~~  is modified to include the uncertainty in LA“’”/ due to

the uncertainties in the surface model parameters k and g. Assuming no correlation between the

measurement and model uncer[aintics,  the modified a~b$ can be approximated by
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(33)

where

[

2.g + 3[,g -  COSQ;] 2

~:(j) = & —
l-g2 1 +g2–2gcosQj 1

(34)

The functions g; and q: were derived for the surface model of ( 11 ); CT; and o: are the variances

associated with the values for k and g, respectively. Note that o~~~ in (32) now also depends on r.

via (33). This dependence, however, was ignored in the derivation of (32) since it has minimal

impact on the derived best-fitting values of r. ~. Therefore, a set value of 0.015 for ro, ~ is used

in the expression for o~~~.

Once x~~~ is determined as a function of ~558, the minimum value of ~~~~  and its corre-
bestjit bestftt

spending optical depth, ~558 and uncertainty AT558 , are then found, using the parabolic curve

fitting procedure described previously. This aerosol optical depth, along with the values of ro, ~

associated with the minimum x~~~,  are then used with (3 I ) to compute the other two metrics,

X;eom and X~PCC . An aerosol model is determined to be a good fit to the data when all three metrics

have values <3.

D. Aerosol Retrieval Simulations

To test how well the algorithm is expected to perform, a sensitivity study was done using

simulated MISR datasets in which the atmospheric aerosol varied with both column amount and

type. The DDV detection scheme, described in Section A, was also used as part of the retrieval sim-

ulation.

The aerosol type used to simulate the MISR measurements was a sulfate/nitrate composition

at RH 70% with an effective radius, r<j~, of 0.21 pm, similar to the Sulfa(e/nitratel  model in the

APOP file of the Aerosol Climatology Product (see Table 1 ) but with smaller particles. Three aero-

sol column amounts were considered, chtirticterized  by optical depths of 0.1, 0.25, and 0.5 at 558

nm. Simulated data were produced for three solar zenith angles, 25°,45°, and 65°, with the azimuth

~1



angles of the MISR views set at values which are typical for those zenith angles. Eleven different

surfdce types were used with directional reflectance properties based on field measurements [35]

- [37]. The multiple scattering calculations were performed using a matrix operator technique [42],

where Rayleigh  scattering was included along with the aerosol scattering and the bidirectional re-

flectance of the various surface types and all orders of surface-atmosphere reflections were taken

into account. The simulated MISR radiances also include the noise properties expected from the

MISR instrument [27], characterized by the parameters o~~~ , o~~Onl , and o~,,eC  . In Table 3 the sur-

face types are listed along with ( 1 ) their NDVI in the nadir view, (2) the extrapolated NDVI for the

case where the atmosphere is absent, and (3) the extrapolated NDVI for the three aerosol column

amounts. The chosen sun angle is 45°. Note that for those cases which are classified as DDV (cases

5,6,7,8, and 10 for which the extrapolatedNDVI20.75), the extrapolated NDVI (no atmosphere)

is generally larger than the nadir view NDVI (no atmosphere), due to a ccmsistently  decreasing

NDV1 with increasing view angle. For the DDV cases the extrapolated NDVI (variable aerosol op-

tical depth) is also quite consistent with the extrapolated NDVI (no atmosphere), illustrating the

use of the extrapolated NDVI as an accurate indicator of DDV targets when aerosol is present. The

median value of the identified DDV target radiances for each camera view and for the 446 and 672

nm MISR bands was used as the input to the aerosol retrieval algorithm.

In the aerosol retrieval sensitivity study, the candidate aerosols included the correct RH 70%

sulfate/nitrate model (refJ = 0.21 pm), this sulfate/nitrate model at 90% RH (re~~ = 0.32 pm), and

a selection of six other aerosol possibilities, taken from the APOP file. These additional models

included: RH O% Sulfate/nitrate 2 (reff = 0.53 ~m), RH 70% and 90% Sea Salt (accumulation

mode; r,,, = 0.70 and 1.30 Pm, respectively), RI-I 70% Sea Salt (co~se  mode; ~,f-- = 10.23 pm),

and absorbing Mineral Dust (small and large particles; r,Jf = 0.53 and 4.26 pm, respectively).

These candidate models represent aerosol types with particle sizes and single scattering albedos

different from the correct model and, therefore, will test the sensitivity of the algorithm to these

aerosol properties. The retrieval results are shown in Tables 4, 5, and 6 for the solar zenith angles

of 25°, 45°, and 65°, respectively. Those retrieved optical depths with an uncertainty of 0.00 in the

tables are cases in which the minimum z~~~ occurred at a limiting value of the aerosol optical

depth, i.e., either no aerosol or its maximum amount. This maximum amount requires a zero sur-

f~ce reflectance to satisfy the observations: any more would demand a negative surface reflectance

in a least one of the multi-angle, multispcctral  observations since the aerosols are brighter than the

surface in all cases. From the criteriti  tha~  X~,),, . X~,,,),,,  , :md x~,,,.,. mLISt etich bc S 3 as an acceptable



fit (o [he observations, the !Irst point to note is that good retrievals are obtained for all aerosol col-

umn amounts and solar zenith angles when the correct candidate model (RH 70% Sulf~te/nitrate  1 )

is used. Secondly, these tables clearly show that sensitivity to the aerosol model type increases with

increasing column amount and increasing solar zenith angle. For example, in Table 4 (solar zenith

angle (30 = 25°) for an optical depth of 0.1, five of [he eight candidate models have acceptable fits,

whereas only two models fit well for the optical depths 0.25 and 0.50. These results also show that

the non-correct but successful candidate models produce optical depths which can be substantially

different than the correct one. When f30 increases to 45° (Table 5) only two of the candidate models

(the correct model and its 90% RH counterpart) produce acceptable fits for optical depths 0.1 and

0.25 and only the correct aerosol model is acceptable for optical depth 0.50. Also note that the re-

trieved optical depths for the two successful models agree more closely than for these same two

models  when (30 is 25°. Finally, in Table 6 ((10 = 65°) only the correct aerosol type is a successful

model for all three optical depths.

VI. AEROSOL, RETRIEVAL OVER HETEROGENEOUS LAND

Since dense, dark vegetation is found only over a portion of the land surface, other methods

are required to extend the aerosol retrieval spatial coverage. Separability of the surface-leaving and

atmosphere-leaving signals over terrain with heterogeneous surface reflectance is the objective of

several methods developed by the MISR team [43] - [46]. The “heterogeneous land” algorithm dif-

fers from the “dark water” and “DDV” algorithms in that it does not rely on the presence of a par-

ticular, well described surface type, but instead uses the presence of spatial contrasts within the

17.6 km retrieval region to derive an empirical orthogonal function (EOF) representation of the re-

gion-averaged surface contribution to the TOA radiances. This is the most general of the three tech-

niques and it uses all four MISR spectral bands in the analysis.

A. Surface Contrib[ition to TOA Reflectance

For the retrieval of aerosol over

(L~r~)  , averaged over the individual

pressed as

heterogeneous land [46], we use the surface contribution

subregions of a 17.6 km region. This average can be ex-



.

(35)
n=!

where f~ ~ are empirical orthogonal functions, derived from the individual subregion radiances.

These EOF’S are the eigenvectors of a scatter matrix CA, with elements

Cl ,j = ~[Lf~~(i) - (L~’sR(i))][L~~~(.j)  - (~~’sR(j))l i, j = 1 , . . . ,  Nca,,,,,.
x, J , (36)

where the x, y summation is over all the cloud-free subregions within  the region, (LA~ls~)  is the

average MISR radiance of the region for a camera with an angular view designated by i orj, and

N~a~ is the number of camera views used. Since the atmospheric path radiance Lf’m is assumed

constant over the region, it can be seen from ( 1 ) that the process of subtracting (LA~’sR) from the

individual subregion radiances LA, ,
surf

‘y; results in Cl being a function only of Lk , which

generally varies with location, x, y.

There are N~ free parameters An, ~ in (35) that are adjusted during the w-s of comP~ing

measurements to model radiances. Since the eigenvectors  form a complete basis vector set, the

number of eigenvectors, Nk, used in the summation must be less than the total number of eigen-

vec[ors  (i.e., number of cameras used, Ncam ).

B. Criteria for Aerosol Best Estimate

The criterion used to determine the best fitting aerosol model is the minimization of the test

variable X;, defined as

,

(37)

where the summation is over the nine MISR view angles and four wavelengths, LA~“” is the path

radiance of the model aerosol mixture, and o~e,t,ro, ~ is the estimated variance of the NA term
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summation. The weight L)k ““s~) exists, otherwise vi = O. For each T5$8= 1 ifavalid  valucsof  (Ll

on the optical depth grid, the expansion coefficients An ~ are varied to minimize the summation

factor in a least squares sense. Their values are easily obtained by applying the orthonormality

condition of the eigenvectors to the bracketed expression in (37), i.e.,

An, A =’ ~[(~A‘f’s%)) - g“’’(j7~)l  “ f“, ~(j). (38)
J

The contribution of an individual eigenvector  in describing the angular shape  of (Lyr’)  k

determined by the relative size of its eigenvalue. The eigenvectors are ordered such that the corre-

sponding eigenvalues en ~ decrease monotonically, i.e., el ~ > ez ~ >... > e~
com~

~. Therefore,

only those eigenvectors with eigenvalues greater than or equal to a certain size are used in the sum-

mation in (35). The maximum number of usable eigenvectors  N~aX is determined by the condition

where 2eN ,am, ~ is twice the smallest eigenvalue and approximates the noise threshold of the image.

Eigenvalues smaller than this threshold have eigenvectors  which contribute essentially noise to the

angular variability of the region. Given iVmaX, the variance o~emain  ~ associated with the unused

eigenvalues is given by

(40)

where N3Ub is the number of subregions used to generate the eigenvectors.  Therefore, o~eferO, ~

in (37) can be written as

(41)

Since (L~lsR) - L~lm continuously decreases with increasing model aerosol optical depth, the

associated vtiriance o~c,@rO ~ also is correspondingly reduced, referenced to the case of no aerosol

(i.e, only Rayleigh scattering, TA = ~~(’} ) and to a particular reference camera, reJ normally nadir.
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Foreach of thecandidate  aerosol models aXfi iscompu[ed  foreach value of Nusedin  (37),

starting with N= 1 (use of [he first cigcnvector  only) and incrementing the number of ei,genvectors

in each wavelength band simultaneously by unity but not letting the number in any given wave-

length band exceed N~aX. The minimum X; for each value of N, z;, ~in , and the associated pa-

rameters IN 558, and ATN 558, expressed by Eqs. (5) and (6), respectively, are then found using the

parabolic curve fitting procedure.

For the aerosol model being evaluated, the reported best-fitting optical depth is computed

from a weighted average of all N~aX optical depths, ~~ 558,

Nmox

z ‘N, 558
2

bestfit = N=] xN,  min
7558 Nmo, ,

(42)

z 1
2

N = I ~N. min

bestfitwhere the weights are the inverses of the x;, min . The formal uncertainty associated with ~558

is then expressed as

TN‘“r ‘TN, 558
z 2

A~bestjit N = I xN, ~ln
558 = N~O,

,
(43)

Finally, the effective X~dterO associated with T&~tiit is defined as the weighted average of all of the
2

ZAr, min J

Nbes,fit, = ~
‘~elero(T558 ~tit ‘“ox ,

(44)

We consider successful aerosol models to be those for which z~,ter(, S 3.



C. Aerosol Retrieval Sitmtlations

A sensitivity study, similar to that for [he “DDV” algorithm, was performed for the same

atmospheric conditions, surfdce BRF types, and sun geometries. However, a scene of the Wind

River Basin in Wyoming from Landsat imagery was used to pattern the surface pixel albedo  vari-

ability in the simulated MISR rnultiangle imagery. Two limiting cases relating pixel brightness

(i.e., albedo) to BRF type were considered. One case (random) had randomly assigned BRF types

(from the list of eleven types in Table 3) to the pixels in the scene. The other case (correlated) as-

signed a particular BRF type to a pixel, depending on the pixel brightness. It is expected that a real

scene would exhibit albedo-BRF characteristics which fall somewhere between these limiting cas-

es. Each simulated MISR image was 256x256 pixels in size, which was subsequently subdivided

into 16x 16 subimages, each 16x 16 pixels in size. Each of these 256 multi-angle subimages was

then analyzed using the “heterogeneous land” retrieval algorithm. For the random surface property

case, an aerosol optical depth of 0.5 and a sun angle of 45°, the set of eigenvalues for a typical sub-

image are listed in Table 7. The criterion for selecting the number of eigenvectors to be use in the

analysis of a given subimage is described by (39). For the eigenvalues in Table 7, the maximum

number of selected eigenvectors is five and for the other associated 255 subimages, the maximum

number ranged from three to six.

The results of the retrievals are shown in Tables 8,9, and 10 for solar zenith angles of 25°,

45°, and 65°, respectively. The results of the random BRF -albedo  selection case were very similar

to the correlated case and so only the correlated case is shown here. Also, since 256 subimages

were separately analyzed within the image with the algorithm, the retrieved optical depths ~ bestfit

and the best fit pararmwm z~elero listed in the tables represent averages of these subimages.  Ap-

plying the criterion that X~ef,,O be less than or equal to 3 as an acceptable fit to the observations,

the results are similar to those for the DDV algorithm, indicating equivalent sensitivities to both

aerosol column amount and type.

VII. DISCUSSION AND CONCLUDING REMARKS

The three aerosol retrieval algorithms described in this paper will be available at time of

launch to begin the arduous task of processing the MISR datfi taken over the globe on a routine

basis. These algorithms have some attributes in common and others which are unique to the par-



(icular  type of observed surface conditions. For observations taken over ocean or dark water, the

“dark water” rctrievd  algorithm is used and is consickrd  to bc the most accurate of the three al-

gorithms. Here the surface condition is assumed to be completely known, i.e., (here are no free pa-

rameters. and therefore should contribute minimal uncertainty to the aerosol retrieval results. This

algorithm will undoubtedly be the most used in a global sense but the least used when over land,

since dark lakes on the order of 5 kilometers or more in size (a pre-requisite for using the algorithm)

are not common. In the absence of land-based dark water bodies, the “DDV” retrieval algorithm

will be used when dense, dark vegetation is identified, and is probably the next most accurate al-

gorithm. There is one free parameter per spectral band in its description of the surface condition,

the reflectivity parameter rO ~. Therefore, when compared to the “dark water” algorithm, it should

not be quite as sensitive to the atmospheric condition. Finally, the “heterogeneous land” algorithm

is used when the other two algorithms have been excluded, and of the three algorithms its overall

accuracy is the least well characterized at present. The surface condition for this algorithm is de-

scribed by an empirical orthogonal function series with about four or five terms. Since the number

of free parameters per spectral band equals the number of terms used, this algorithm has consider-

able flexibility in describing the surface contribution to the TOA radiance and in principle, it has

less sensitivity than the other two algorithms to the atmospheric path radiance. It has the benefit,

however, of using an angular description of the surface which is derived directly from the multi-

angular data, whereas the other two algorithms rely on the accuracy of the predetermined angular

characteristics of their surface models. This is probably the reason the “heterogeneous land” algo-

rithm compared so well to the “DDV” algorithm in the aerosol retrieval tests.

A considerable amount of effort will be spent investigating the accuracy of these algorithms

immediately after MISR data become available. Our results will be compared directly with those

from other EOS instruments, e.g., MODIS, other satellite instruments, and to the aerosol climatol-

ogies.  Selected areas over the globe will be identified in which all three algorithms can be used,

thus allowing a detailed intercomparison of retrieval results. Other sites have extensive aerosol

monitoring equipment, e.g., [47] which allows a comparison of their retrieval results with those

from a simultaneous MISR overpass. There will also be an ongoing series of MISR-specific  vali-

dation campaigns around the Southern California area and large, but less frequent, EOS validation

campaigns at selected sites and involving various EOS instrument groups. All these opportunities

will be used to test and improve the MISR retrieval algorithms, eventually resulting in global,

monthly maps of aerosol distribution along with daily regional coverage.
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Table 1: Pure particle types in the ACP
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Table 2: Tropospheric particle mixtures in the ACP

Minimum
Conditions Components relative

abundance
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Table 3: Surface Type NDVI

nadir extrap. extrap. extrap. extrap.
Case Surface Type NDVI NDVI NDVI NDV1 NDVI

no atmo. no atmo. Taer = 0.10 ~aer = 0.25 Taer = 0.50

1 Soil 0.088 0.089 0.122 0.133 0.128

2 Grassland 0.133 0.130 0.141 0.154 0.166

3 Steppe Grass 0.153 0.105 0.136 0.163 0.189

4 Hard Wheat 0.179 0.067 0.099 0.133 0.172

5 Irrigated Wheat 0.784 0.796 0.771 0.793 0.801

6 Hardwood forest 0.867 0.932 0.936 0.970 0,970

7 Pine Forest 0.782 0.862 0.864 0.893 0.872

8 Lawn Grass 0.763 0.777 0.750 0.772 0.775

9 Corn 0.520 0.439 0.464 0.508 0.539

10 Soybeans 0.896 0.946 0.949 0.981 1.000
1

11 Orchard Grass 0.555 0.511 0.534 0.576 0.589
—
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Table 4: DDV aerosol retrieval results
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Table 6: DDV aerosol retrieval results
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Table 8: EOF aerosol retrieval results
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Table 7: Subimage  Eigenvalues

1 2 3 4 5 6 7 8 9

5.84E-1 1.56E-1 5.25E-2 3.93 E-4 1.23 E-4 8.53 E-5 8.22E-5 6.98 E-5 6.40E-5
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FIGURE CAPTIONS

Figure 1. Summary of MISR aerosol retrieval techniques.
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